资源类型

期刊论文 350

会议视频 8

年份

2023 44

2022 42

2021 48

2020 26

2019 22

2018 21

2017 14

2016 10

2015 21

2014 12

2013 10

2012 10

2011 8

2010 11

2009 8

2008 8

2007 11

2006 5

2005 3

2004 2

展开 ︾

关键词

制氢 4

氢能 4

可再生能源 3

燃料电池 3

能源 3

TRIP钢 2

人工智能 2

力常数 2

无氢渗碳 2

氢燃料电池 2

演化 2

质量 2

键能 2

键长 2

&alpha 1

2035 1

Chord图 1

Klee图 1

N3C空位 1

展开 ︾

检索范围:

排序: 展示方式:

Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction

Shenghua Ye, Gaoren Li

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 473-480 doi: 10.1007/s11705-018-1724-9

摘要:

The polypyrrole(PPy)@NiCo hybrid nanotube arrays have been successfully fabricated as a high performance electrocatalyst for hydrogen evolution reaction (HER) in alkaline solution. The strong electronic interactions between PPy and NiCo alloy are confirmed by X-ray photoelectron spectroscopy and Raman spectra. Because these interations can remarkably reduce the apparent activation energy (Ea) for HER and enhance the turnover frequency of catalysts, the electrocatalytic performance of PPy@NiCo hybrid nanotube arrays are significantly improved. The electrochemical tests show that the PPy@NiCo hybrid catalysts exhibit a low overpotential of ~186 mV at 10.0 mA·cm2 and a small tafel slope of 88.6 mV·deg1 for HER in the alkaline solution. The PPy@NiCo hybrid nanotubes also exhibit high catalytic activity and high stability for HER.

关键词: NiCo alloy     polypyrrole     hybrid nanotube     electrocatalyst     hydrogen evolution reaction    

NiS heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogenevolution reaction

《化学科学与工程前沿(英文)》 2023年 第17卷 第4期   页码 437-448 doi: 10.1007/s11705-022-2228-1

摘要: High-performance and ultra-durable electrocatalysts are vital for hydrogen evolution reaction (HER) during water splitting. Herein, by one-pot solvothermal method, MoOx/Ni3S2 spheres comprising Ni3S2 nanoparticles inside and oxygen-deficient amorphous MoOx outside in situ grow on Ni foam (NF), to assembly the heterostructure composites of MoOx/Ni3S2/NF. By adjusting volume ratio of the solvents of ethanol to water, the optimized MoOx/Ni3S2/NF-11 exhibits the best HER performance, requiring an extremely low overpotential of 76 mV to achieve the current density of 10 mA∙cm‒2 (η10 = 76 mV) and an ultra-small Tafel slope of 46 mV∙dec‒1 in 0.5 mol∙L‒1 H2SO4. More importantly, the catalyst shows prominent high catalytic stability for HER (> 100 h). The acid-resistant MoOx wraps the inside Ni3S2/NF to ensure the high stability of the catalyst under acidic conditions. Density functional theory calculations confirm that the existing oxygen vacancy and MoOx/Ni3S2 heterostructure are both beneficial to the reduced Gibbs free energy of hydrogen adsorption (|∆GH*|) over Mo sites, which act as main active sites. The heterostructure effectively decreases the formation energy of O vacancy, leading to surface reconstruction of the catalyst, further improving HER performance. The MoOx/Ni3S2/NF is promising to serve as a highly effective and durable electrocatalyst toward HER.

关键词: molybdenum oxides     oxygen vacancies     heterostructure     electrocatalysts     hydrogen evolution reaction    

High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution

《能源前沿(英文)》 doi: 10.1007/s11708-023-0892-6

摘要: High entropy materials (HEMs) have developed rapidly in the field of electrocatalytic water-electrolysis for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) due to their unique properties. In particular, HEM catalysts are composed of many elements. Therefore, they have rich active sites and enhanced entropy stability relative to single atoms. In this paper, the preparation strategies and applications of HEM catalysts in electrochemical water-electrolysis are reviewed to explore the stabilization of HEMs and their catalytic mechanisms as well as their application in support green hydrogen production. First, the concept and four characteristics of HEMs are introduced based on entropy and composition. Then, synthetic strategies of HEM catalysts are systematically reviewed in terms of the categories of bottom-up and top-down. The application of HEMs as catalysts for electrochemical water-electrolysis in recent years is emphatically discussed, and the mechanisms of improving the performance of electrocatalysis is expounded by combining theoretical calculation technology and ex-situ/in situ characterization experiments. Finally, the application prospect of HEMs is proposed to conquer the challenges in HEM catalyst fabrications and applications.

关键词: high-entropy     electrocatalysis     synthetic methods     water-electrolysis     hydrogen and oxygen evolutions    

Z-scheme CdS/WO on a carbon cloth enabling effective hydrogen evolution

《能源前沿(英文)》 2021年 第15卷 第3期   页码 678-686 doi: 10.1007/s11708-021-0768-6

摘要: Photocatalytic water splitting for hydrogen (H2) generation is a potential strategy to solve the problem of energy crisis and environmental deterioration. However, powder-like photocatalysts are difficult to recycle, and the agglomeration of particles would affect the photocatalytic activity. Herein, a direct Z-scheme CdS/WO3 composite photocatalyst was fabricated based on carbon cloth through a two-step process. With the support of carbon cloth, photocatalysts tend to grow uniformly for further applications. The experimental results showed that the H2 yield of adding one piece of CdS/WO3 composite material was 17.28 μmol/h, which was 5.5 times as compared to that of pure CdS-loaded carbon cloth material. A cycle experiment was conducted to verify the stability of the as-prepared material and the result demonstrated that the H2 generation performance of CdS/WO3 decreased slightly after 3 cycles. This work provides new ideas for the development of recyclable photocatalysts and has a positive significance for practical applications.

关键词: photocatalysis     CdS/WO3     carbon cloth     Z-scheme     hydrogen evolution    

Erratum to: Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogenevolution reaction in alkaline solution

Shenghua Ye, Gaoren Li

《化学科学与工程前沿(英文)》 2019年 第13卷 第4期   页码 845-845 doi: 10.1007/s11705-019-1879-z

growth of NiSe nanocrystalline array on graphene for efficient hydrogen evolution reaction

Shuai JI, Changgan LAI, Huan ZHOU, Helin WANG, Ling MA, Cong WANG, Keying ZHANG, Fajun LI, Lixu LEI

《能源前沿(英文)》 2022年 第16卷 第4期   页码 595-600 doi: 10.1007/s11708-022-0827-7

摘要: Nickel selenide electrocatalysts for hydrogen evolution reaction (HER) with a high efficiency and a low-cost have a significant potential in the development of water splitting. However, the inferiority of the high overpotential and poor stability restricts their practical applications. Herein, a composite nanostructure consists of ultrasmall NiSe2 nanocrystals embedded on graphene by microwave reaction is reported. The prepared NiSe2/reduced graphite oxide (rGO) electrocatalyst exhibited a high HER activity with an overpotential of 158 mV at a current density of 10 mA/cm2 and a corresponding moderate Tafel slope of 56 mV/dec in alkaline electrolyte. In addition, a high retention of electrochemical properties (approximately 100%) was demonstrated with an unchangeable microstructure after 100 h of continuous operation.

关键词: nickel selenide     carbon materials     nanoparticles     hydrogen evolution reaction (HER)     microwave reaction    

nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogenand oxygen evolution reactions

Miaomiao Tong, Lei Wang, Peng Yu, Xu Liu, Honggang Fu

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 417-424 doi: 10.1007/s11705-018-1711-1

摘要:

A highly active bi-functional electrocatalyst towards both hydrogen and oxygen evolution reactions is critical for the water splitting. Herein, a self-supported electrode composed of 3D network nanostructured NiCoP nanosheets grown on N-doped carbon coated Ni foam (NiCoP/NF@NC) has been synthesized by a hydrothermal route and a subsequent phosphorization process. As a bifunctional electrocatalyst, the NiCoP/NF@NC electrode needs overpotentials of 31.8 mV for hydrogen evolution reaction and 308.2 mV for oxygen evolution reaction to achieve the current density of 10 mA·cm2 in 1 mol·L1 KOH electrolyte. This is much better than the corresponding monometal catalysts of CoP/NF@NC and NiP/NF@NC owing to the synergistic effect. NiCoP/NF@NC also exhibits low Tafel slope, and excellent long-term stability, which are comparable to the commercial noble catalysts of Pt/C and RuO2.

关键词: bimetallic phosphides     N-doped carbon     self-support     hydrogen evolution     oxygen evolution    

Function-reversible facets enabling SrTiO nanocrystals for improved photocatalytic hydrogen evolution

《能源前沿(英文)》 doi: 10.1007/s11708-023-0894-4

摘要: It has been widely reported that, for faceted nanocrystals, the two adjacent facets with different band levels contribute to promoted charge separation, and provide active sites for photocatalytic reduction and oxidation reaction, respectively. In such cases, only one family of facets can be used for photocatalytic hydrogen evolution. Herein, by using SrTiO3 nanocrystals enclosed by {023} and {001} facets as a model photocatalyst, this paper proposed a strategy to achieve the full-facets-utilization of the nanocrystals for photocatalytic hydrogen via chemically depositing Pt nanoparticles on all facets. The photo-deposition experiment of CdS provided direct evidence to demonstrate that the {023} facets which were responsible for photooxidation reaction can be function-reversed for photocatalytic hydrogen evolution after depositing Pt nanoparticles, together with the {001} facets. Thus, the full-facets-utilization led to a much-improved activity for photocatalytic hydrogen, in contrast to those SrTiO3 nanocrystals with only {001} facets deposited by Pt nanoparticles via a photo-deposition method.

关键词: SrTiO3 nanocrystals     crystal facets     photocatalysis     hydrogen evolution    

Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution

Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong

《化学科学与工程前沿(英文)》 2021年 第15卷 第5期   页码 1134-1146 doi: 10.1007/s11705-020-2014-x

摘要: The exploration of cost-effective, high-performance, and stable electrocatalysts for the hydrogen evolution reaction (HER) over wide pH range (0–14) is of paramount importance for future renewable energy conversion technologies. Regulation of electronic structure through doping vanadium atoms is a feasible construction strategy to enhance catalytic activities, electron transfer capability, and stability of the HER electrode. Herein, V-doped NiCoP nanosheets on carbon fiber paper (CFP) (denoted as V -NiCoP/CFP) were constructed by doping V modulation on NiCoP nanosheets on CFP and used for pH-universal HER. Benefiting from the abundant catalytic sites and optimized hydrogen binding thermodynamics, the resultant V -NiCoP/CFP demonstrates a significantly improved HER catalytic activity, requiring overpotentials of 46.5, 52.4, and 85.3 mV to reach a current density of 10 mA·cm in 1 mol·L KOH, 0.5 mol·L H SO , and 1 mol·L phosphate buffer solution (PBS) electrolytes, respectively. This proposed cation-doping strategy provides a new inspiration to rationally enhance or design new-type nonprecious metal-based, highly efficient, and pH-universal electrocatalysts for various energy conversion systems.

关键词: hydrogen evolution reaction     transition metal phosphides     pH-universal     vanadium doping     carbon fiber paper    

An overview and recent advances in electrocatalysts for direct seawater splitting

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1408-1426 doi: 10.1007/s11705-021-2102-6

摘要: In comparison to pure water, seawater is widely accepted as an unlimited resource. The direct seawater splitting is economical and eco-friendly, but the key challenges in seawater, especially the chlorine-related competing reactions at the anode, seriously hamper its practical application. The development of earth-abundant electrocatalysts toward direct seawater splitting has emerged as a promising strategy. Highly efficient electrocatalysts with improved selectivity and stability are of significance in preventing the interference of side reactions and resisting various impurities. This review first discusses the macroscopic understanding of direct seawater electrolysis and then focuses on the strategies for rational design of electrocatalysts toward direct seawater splitting. The perspectives of improved electrocatalysts to solve emerging challenges and further development of direct seawater splitting are also provided.

关键词: seawater splitting     electrocatalysts     oxygen evolution reaction     hydrogen evolution reaction     chlorine chemistry    

Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation

《环境科学与工程前沿(英文)》 2022年 第16卷 第10期 doi: 10.1007/s11783-022-1566-z

摘要:

● An urchin-like OMS/ZIS composite was fabricated by a facile solvothermal method.

关键词: Dual-functional photocatalysts     Oxygen-doped MoS2/ZnIn2S4     H2 evolution     Organic pollutant    

Design and synthesis of ZnCoO/CdS for substantially improved photocatalytic hydrogen production

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 606-616 doi: 10.1007/s11705-022-2233-4

摘要: In this study, the hydrogen evolution performance of CdS nanorods is improved using ZnCo2O4. ZnCo2O4 nanospheres are synthesized using the hydrothermal and calcination methods, and CdS nanorods are synthesized using the solvothermal method. From the perspective of morphology, numerous CdS nanorods are anchored on the ZnCo2O4 microspheres. According to the experimental results of photocatalytic hydrogen evolution, the final hydrogen evolution capacity of 7417.5 μmol∙g–1∙h–1 is slightly more than two times that of the single CdS, which proves the feasibility of our study. Through various characterization methods, it is proved that the composite sample has suitable optoelectronic properties. In addition, ZnCo2O4 itself exhibits good conductivity and low impedance, which shortens the charge-transfer path. Overall, the introduction of ZnCo2O4 expands the adsorption range of light and improves the performance of photocatalytic hydrogen evolution. This design can provide reference for developing high-efficiency photocatalysts.

关键词: ZnCo2O4 nanosphere     CdS nanorods     photocatalytic hydrogen evolution    

growth of phosphorized ZIF-67-derived amorphous CoP/Cu2O@CF electrocatalyst for efficient hydrogenevolution reaction

《化学科学与工程前沿(英文)》 2023年 第17卷 第10期   页码 1430-1439 doi: 10.1007/s11705-023-2320-1

摘要: Transition metal phosphides have been extensively studied for catalytic applications in water splitting. Herein, we report an in situ phosphorization of zeolitic imidazole frameworks (ZIF-67) to generate amorphous cobalt phosphide/ZIF-67 heterojunction on a self-supporting copper foam (CF) substrate with excellent performance for hydrogen evolution reaction (HER). The needle-leaf like copper hydroxide was anchored on CF surface, which acted as implantation to grow ZIF-67. The intermediate product was phosphorized to obtain final electrocatalyst (CoP/Cu2O@CF) with uniform particle size, exhibiting a rhombic dodecahedron structure with wrinkles on the surface. The electrochemical measurement proved that CoP/Cu2O@CF catalyst exhibited excellent HER activity and long-term stability in 1.0 mol·L–1 KOH solution. The overpotential was only 62 mV with the Tafel slope of 83 mV·dec–1 at a current density of 10 mA·cm–2, with a large electrochemical active surface area. It also showed competitive performance at large current which indicated the potential application to industrial water electrolysis to produce hydrogen. First-principle calculations illustrated that benefit from the construction of CoP/ZIF-67 heterojunction, the d-band center of CoP downshifted after bonding with ZIF-67 and the Gibbs free energy (ΔGH*) changed from –0.18 to –0.11 eV, confirming both decrease in overpotential and excellent HER activity. This work illustrates the efficient HER activity of CoP/Cu2O@CF catalyst, which will act as a potential candidate for precious metal electrocatalysts.

关键词: CoP/Cu2O@CF     electrocatalyst     phosphorization     HER     DFT    

Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1561-1571 doi: 10.1007/s11705-021-2089-z

摘要: It is of broad interest to develop emerging photocatalysts with excellent light-harvesting capacity and high charge carrier separation efficiency for visible light photocatalytic hydrogen evolution reaction. However, achieving satisfying hydrogen evolution efficiency under noble metal-free conditions remains challenging. In this study, we demonstrate the fabrication of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS nanoparticles for hydrogen production under visible light irradiation (λ>420 nm). Synergetic enhancement of photocatalytic activity is achieved by the slow photon effect and improved separation efficiency of photogenerated charge carriers. The obtained composites could afford very high hydrogen production efficiencies up to 19.67 mmol·g−1·h−1, with an apparent quantum efficiency of 35.9% at 420 nm, which is 4.2 and 23.9 times higher than those of pure Zn0.5Cd0.5S (4.67 mmol·g−1·h−1) and CdS (0.82 mmol·g−1·h−1), respectively. In particular, under Pt-free conditions, an attractive hydrogen production rate (3.23 mmol·g−1·h−1) was achieved, providing a low-cost and high-efficiency strategy to produce hydrogen from water splitting. Moreover, the composites showed excellent stability, and no obvious loss in activity was observed after five cycling tests.

关键词: three-dimensionally ordered macroporous SrTiO3     ZnxCd1–xS     visible light     hydrogen production     promotion mechanism    

Facile route to achieve MoSe-NiSe on nickel foam as efficient dual functional electrocatalysts for overall water splitting

《能源前沿(英文)》 2022年 第16卷 第3期   页码 483-491 doi: 10.1007/s11708-022-0813-0

摘要: Since the catalytic activity of present nickel-based synthetic selenide is still to be improved, MoSe2-Ni3Se2 was synthesized on nickel foam (NF) (MoSe2-Ni3Se2/NF) by introducing a molybdenum source. After the molybdenum source was introduced, the surface of the catalyst changed from a single-phase structure to a multi-phase structure. The catalyst surface with enriched active sites and the synergistic effect of MoSe2 and Ni3Se2 together enhance the hydrogen evolution reactions (HER), the oxygen evolution reactions (OER), and electrocatalytic total water splitting activity of the catalyst. The overpotential of the MoSe2-Ni3Se2/NF electrocatalyst is only 259 mV and 395 mV at a current density of 100 mA/cm2 for HER and OER, respectively. MoSe2-Ni3Se2/NF with a two-electrode system attains a current density of 10 mA/cm2 at 1.60 V. In addition, the overpotential of HER and OER of MoSe2-Ni3Se2/NF within 80000 s and the decomposition voltage of electrocatalytic total water decomposition hardly changed, showing an extremely strong stability. The improvement of MoSe2-Ni3Se2/NF catalytic activity is attributed to the establishment of the multi-phase structure and the optimized inoculation of the multi-component and multi-interface.

关键词: three-dimensional molybdenum nanomaterials     hydrogen evolution reaction     oxygen evolution reaction     overall water splitting    

标题 作者 时间 类型 操作

Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogen evolution reaction

Shenghua Ye, Gaoren Li

期刊论文

NiS heterostructure grown on nickel foam as efficient and durable self-supported electrocatalysts for hydrogenevolution reaction

期刊论文

High-entropy catalysts for electrochemical water-electrolysis of hydrogen evolution and oxygen evolution

期刊论文

Z-scheme CdS/WO on a carbon cloth enabling effective hydrogen evolution

期刊论文

Erratum to: Polypyrrole@NiCo hybrid nanotube arrays as high performance electrocatalyst for hydrogenevolution reaction in alkaline solution

Shenghua Ye, Gaoren Li

期刊论文

growth of NiSe nanocrystalline array on graphene for efficient hydrogen evolution reaction

Shuai JI, Changgan LAI, Huan ZHOU, Helin WANG, Ling MA, Cong WANG, Keying ZHANG, Fajun LI, Lixu LEI

期刊论文

nanosheets supported on N-doped carbon coated Ni foam as a highly active bifunctional electrocatalyst for hydrogenand oxygen evolution reactions

Miaomiao Tong, Lei Wang, Peng Yu, Xu Liu, Honggang Fu

期刊论文

Function-reversible facets enabling SrTiO nanocrystals for improved photocatalytic hydrogen evolution

期刊论文

Tuning the electronic structure of NiCoP arrays through V doping for pH-universal hydrogen evolution

Yu Lin, Jinlei Wang, Duanlin Cao, Yaqiong Gong

期刊论文

An overview and recent advances in electrocatalysts for direct seawater splitting

期刊论文

Highly effective visible-photocatalytic hydrogen evolution and simultaneous organic pollutant degradation

期刊论文

Design and synthesis of ZnCoO/CdS for substantially improved photocatalytic hydrogen production

期刊论文

growth of phosphorized ZIF-67-derived amorphous CoP/Cu2O@CF electrocatalyst for efficient hydrogenevolution reaction

期刊论文

Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered

期刊论文

Facile route to achieve MoSe-NiSe on nickel foam as efficient dual functional electrocatalysts for overall water splitting

期刊论文